Problem 17

Prove that if n is a positive integer, then $7^{n}-1$ is divisible by 6 .

Solution

Prove this by using the principle of mathematical induction. Start by showing that the base case is true. If $n=1$, then

$$
\frac{7^{n}-1}{6}=\frac{7^{1}-1}{6}=\frac{6}{6}=1 .
$$

Since the right side is an integer, $7^{1}-1$ is divisible by 6 . Now assume the inductive hypothesis; that is, $7^{k}-1$ is divisible by 6 ,

$$
\frac{7^{k}-1}{6}=m,
$$

where m and k are positive integers. The aim is to show that $7^{k+1}-1$ is also divisible by 6 .

$$
\begin{gathered}
7^{k}-1=6 m \\
7^{k}=6 m+1 \\
7\left(7^{k}\right)=7(6 m+1) \\
7^{k+1}=42 m+7 \\
7^{k+1}-1=42 m+6 \\
7^{k+1}-1=6(7 m+1) \\
\frac{7^{k+1}-1}{6}=7 m+1
\end{gathered}
$$

Since $7 m+1$ is a positive integer, $7^{k+1}-1$ is divisible by 6 . Therefore, by the principle of mathematical induction, $7^{n}-1$ is divisible by 6 if n is a positive integer.

